A GENERALIZATION OF THE KORSELT'S CRITERION

NESTED CARMICHAEL NUMBERS

By Renaud LIFCHITZ¹

March 2002 first release (last update : March 31, 2002)

1 Introduction to Carmichael numbers :

1°) <u>Definition</u>: A positive composite integer n is called a Carmichael number if and only if for all integer b we have $b^n \equiv b [n]$.

2°) Korselt's Criterion (1899)

 $\underline{\text{Theorem}}$:

A composite odd number n is a Carmichael number if and only if n is squarefree and p-1 divides n-1 for every prime p dividing n.

2 The generalization :

1°) <u>Definitions</u>: Let $E = \{C_1, C_2, ..., C_z\}$ be a set of coprime Carmichael numbers. Let f be a function that returns the product of the elements of a given set. Let F be the set of prime factors of f(E).

Let P(E) be the set of parts of E without $\{\emptyset\}$, and let $S \in P(E)$.

Let T be the set of prime factors of f(S).

Let $m = lcm \{ p_i - 1 \text{ for all } p_i \in F \}$

Let $g = gcd \{C_j - 1 \text{ for all } C_j \in E\}$

2^o) <u>Theorem :</u>

 $(\forall S \quad f(S) \text{ is a Carmichael number}) \iff (m \mid g)$

¹Student at University of PARIS VI (Jussieu) : **RenaudL@orange.fr** See http ://ourworld.compuserve.com/homepages/hlifchitz/Renaud.html

 $3^{\rm o}$) <u>Proof</u>:

• Suppose $m \mid g$. By definition of g, we have $g \mid C_j - 1 \quad \forall C_j \in E$ which is equivalent to $C_j \equiv 1 \mid g \mid \forall C_j \in E$ it implies $f(S) \equiv 1 \mid g \mid \forall S$ because f(S) is a product of elements of Eso $g \mid f(S) - 1 \quad \forall S \quad (I)$ but by definition of m, we have $(p_i - 1 \mid m \quad \forall p_i \in F)$ (II) and by hypothesis : $m \mid g \quad (III)$ with (II),(III) and (I) $\Longrightarrow p_i - 1 \mid f(S) - 1 \quad \forall p_i \in F, \forall S$ $\Longrightarrow p_i - 1 \mid f(S) - 1 \quad \forall p_i \in T, \forall S \quad \text{because } S \in P(E) \Longrightarrow T \subseteq F$ By Korselt's criterion, $\forall S \quad f(S)$ is a Carmichael number.

• Conversely, suppose $(\forall S \quad f(S) \text{ is a Carmichael number})$. By Korselt's criterion : $p_i - 1 \mid \left(\prod_{i \neq k} C_i\right) - 1 \quad \forall k, \forall p_i \mid \prod_{i \neq k} C_i \quad (\text{IV}) \quad \text{because} \left(\prod_{i \neq k} C_i\right) \text{ is Carmichael}$ likewise, $p_i - 1 \mid \left(\prod_i C_i\right) - 1 \quad \forall k, \forall p_i \mid \prod_{i \neq k} C_i \quad \text{because} \left(\prod_i C_i\right) \text{ is Carmichael}$ it implies that $p_i - 1 \mid \left(\prod_i C_i\right) - \left(\prod_{i \neq k} C_i\right) \quad \forall k, \forall p_i \mid \prod_{i \neq k} C_i$ consequently, $p_i - 1 \mid \left(\left(\left(\prod_{i \neq k} C_i\right) - 1\right) + 1\right) \cdot (C_k - 1) \quad \forall k, \forall p_i \mid \prod_{i \neq k} C_i$ (IV) implies $p_i - 1 \mid C_k - 1 \quad \forall k, \forall p_i \mid \prod_{i \neq k} C_i \quad (V)$ and of course, $p_i - 1 \mid C_k - 1 \quad \forall k, \forall p_i \mid C_k \quad (VI) \quad \text{because } C_k \text{ is Carmichael}$ $(V) + (VI) \Longrightarrow p_i - 1 \mid C_k - 1 \quad \forall C_k \in E, \forall p_i \in F$ $\Longrightarrow m \mid C_k - 1 \quad \forall C_k \in E$

3 The concept of nested Carmichaels :

When |S| = 1, the previous theorem becomes :

 $C \text{ is a Carmichael number} \iff lcm \{p_i - 1\} \mid C - 1$ which is clearly equivalent to :

C is a Carmichael number $\iff p_i - 1 \mid C - 1 \qquad \forall p_i \mid C$

which is exactly the Korselt's criterion. But Korselt's criterion is only valid for a single Carmichael number. The above part gives a generalization for any number of Carmichael numbers. This leads us to the definition of a new concept : "a set of nested Carmichaels".

1°) <u>Definition</u>: Using the definitions of the part 2, a set S is "a set of nested Carmichaels" if and only if $\forall S f(S)$ is a Carmichael number.

2°) Example : One of the smallest set S of 2 elements is $S = \{C_1, C_2\}$ with $C_1 = 1\overline{729} = 7.13.19$ and $C_2 = 294409 = 37.73.109$. Thus, C_1 , C_2 , and $C_1.C_2$ are all Carmichael numbers.

A much more interesting set is for example $S = \{7207201, 230630401, 56951294401, 571019248801, 3278310235201, 3815902490401, 11943915984001, 129766580143201, 353830002926401, 831957935608801, 2210772268504801, 4513636250323201,$

 $\begin{aligned} & 5514474572006401, 7571362807008001, 26830954437487201, 80222538033237601, \\ & 828430182206827201, 997651728495021601, 10229943908539555201, 28430757383895266401, \\ & 340866183402412668001, 474235364684225944801, 1254602952776990031415201, \\ & 12617108093511625126309286401 \end{aligned}$

Indeed, such a set of length |S| = 24 contains

$$\sum_{i=1}^{24} \binom{24}{i} = 2^{24} - 1 = 16\ 777\ 215$$

Carmichael numbers, which is quite huge compared with the 24 elements of S! This set was found using a specific program, and the necessary conditions of the theorem. The decimal expansion of the 16 777 215 Carmichael numbers cannot fit in a CD (650 MB), even compressed, but one can easily recover them only using the 24 elements of S...

<u>Conclusion</u>: Thus, a nested set of Carmichael numbers provides a very efficient way to store $2^n - 1$ Carmichael numbers using only n numbers (which represents an exponential compression rate!) Could this be useful for future applications?