A GENERALIZATION OF THE KORSELT'S CRITERION

NESTED CARMICHAEL NUMBERS

By Renaud LIFCHITZ ${ }^{1}$

March 2002
first release (last update : March 31, 2002)

1 Introduction to Carmichael numbers :

1°) Definition : A positive composite integer n is called a Carmichael number if and only if for all integer b we have $b^{n} \equiv b[n]$.
2°) Korselt's Criterion (1899)
Theorem :
A composite odd number n is a Carmichael number if and only if n is squarefree and $p-1$ divides $n-1$ for every prime p dividing n.

2 The generalization :

1°) Definitions :
Let $E=\left\{C_{1}, C_{2}, \ldots, C_{z}\right\}$ be a set of coprime Carmichael numbers.
Let f be a function that returns the product of the elements of a given set.
Let F be the set of prime factors of $f(E)$.
Let $P(E)$ be the set of parts of E without $\{\emptyset\}$, and let $S \in P(E)$.
Let T be the set of prime factors of $f(S)$.
Let $m=l c m\left\{p_{i}-1\right.$ for all $\left.p_{i} \in F\right\}$
Let $g=\operatorname{gcd}\left\{C_{j}-1\right.$ for all $\left.C_{j} \in E\right\}$
2°) Theorem :

$$
(\forall S \quad f(S) \text { is a Carmichael number }) \Longleftrightarrow(m \mid g)
$$

[^0]3°) Proof:

- Suppose $m \mid g$.

By definition of g, we have $g \mid C_{j}-1 \quad \forall C_{j} \in E$
which is equivalent to $C_{j} \equiv 1[g] \quad \forall C_{j} \in E$
it implies $f(S) \equiv 1[g] \forall S$ because $f(S)$ is a product of elements of E so $g \mid f(S)-1 \quad \forall S \quad$ (I)
but by definition of m, we have $\left(p_{i}-1 \mid m \quad \forall p_{i} \in F\right) \quad$ (II)
and by hypothesis : $m \mid g$ (III)
with (II),(III) and (I) $\Longrightarrow p_{i}-1 \mid f(S)-1 \quad \forall p_{i} \in F, \forall S$
$\Longrightarrow p_{i}-1 \mid f(S)-1 \quad \forall p_{i} \in T, \forall S \quad$ because $S \in P(E) \Longrightarrow T \subseteq F$
By Korselt's criterion, $\forall S f(S)$ is a Carmichael number.

- Conversely, suppose ($\forall S \quad f(S)$ is a Carmichael number).

By Korselt's criterion :
$p_{i}-1\left|\left(\prod_{i \neq k} C_{i}\right)-1 \quad \forall k, \forall p_{i}\right| \prod_{i \neq k} C_{i} \quad$ (IV) because $\left(\prod_{i \neq k} C_{i}\right)$ is Carmichael likewise, $p_{i}-1\left|\left(\prod_{i} C_{i}\right)-1 \quad \forall k, \forall p_{i}\right| \prod_{i \neq k} C_{i} \quad$ because $\left(\prod_{i} C_{i}\right)$ is Carmichael it implies that $p_{i}-1\left|\left(\prod_{i} C_{i}\right)-\left(\prod_{i \neq k} C_{i}\right) \quad \forall k, \forall p_{i}\right| \prod_{i \neq k} C_{i}$ consequently, $p_{i}-1\left|\left(\left(\left(\prod_{i \neq k} C_{i}\right)-1\right)+1\right) \cdot\left(C_{k}-1\right) \quad \forall k, \forall p_{i}\right| \prod_{i \neq k} C_{i}$
(IV) implies $p_{i}-1\left|C_{k}-1 \quad \forall k, \forall p_{i}\right| \prod_{i \neq k} C_{i} \quad(\mathrm{~V})$
and of course, $p_{i}-1\left|C_{k}-1 \quad \forall k, \forall p_{i}\right| C_{k}$ (VI) because C_{k} is Carmichael $(\mathrm{V})+(\mathrm{VI}) \Longrightarrow p_{i}-1 \mid C_{k}-1 \quad \forall C_{k} \in E, \forall p_{i} \in F$ $\Longrightarrow m \mid C_{k}-1 \quad \forall C_{k} \in E$
$\Longrightarrow m \mid g$

3 The concept of nested Carmichaels :

When $|S|=1$, the previous theorem becomes :
C is a Carmichael number $\Longleftrightarrow l c m\left\{p_{i}-1\right\} \mid C-1$
which is clearly equivalent to :
C is a Carmichael number $\Longleftrightarrow p_{i}-1\left|C-1 \quad \forall p_{i}\right| C$
which is exactly the Korselt's criterion. But Korselt's criterion is only valid for a single Carmichael number. The above part gives a generalization for any number of Carmichael numbers. This leads us to the definition of a new concept : "a set of nested Carmichaels".
1°) Definition : Using the definitions of the part 2, a set S is "a set of nested Carmichaels" if and only if $\quad \forall S f(S)$ is a Carmichael number.
2°) Example : One of the smallest set S of 2 elements is $S=\left\{C_{1}, C_{2}\right\}$ with $C_{1}=1 \overline{729=7.13 .19}$ and $C_{2}=294409=37.73 .109$. Thus, C_{1}, C_{2}, and $C_{1} . C_{2}$ are all Carmichael numbers.

A much more interesting set is for example $S=\{7207201,230630401,56951294401$, 571019248801, $3278310235201,3815902490401,11943915984001,129766580143201$, $353830002926401,831957935608801,2210772268504801,4513636250323201$,

```
5514474572006401, 7571362807008001, 26830954437487201, 80222538033237601,
828430182206827201, 997651728495021601, 10229943908539555201, 28430757383895266401,
340866183402412668001, 474235364684225944801, 1254602952776990031415201,
12617108093511625126309286401}
```

Indeed, such a set of length $|S|=24$ contains

$$
\sum_{i=1}^{24}\binom{24}{i}=2^{24}-1=16777215
$$

Carmichael numbers, which is quite huge compared with the 24 elements of S ! This set was found using a specific program, and the necessary conditions of the theorem. The decimal expansion of the 16777215 Carmichael numbers cannot fit in a CD (650 MB), even compressed, but one can easily recover them only using the 24 elements of $S \ldots$

Conclusion : Thus, a nested set of Carmichael numbers provides a very efficient way to store $2^{n}-1$ Carmichael numbers using only n numbers (which represents an exponential compression rate!) Could this be useful for future applications?

[^0]: ${ }^{1}$ Student at University of PARIS VI (Jussieu) : RenaudL@orange.fr See http ://ourworld.compuserve.com/homepages/hlifchitz/Renaud.html

